17 research outputs found

    Outage Analysis of Energy Harvested Relay-Aided Device-to-Device Communications in Nakagami Channel

    Get PDF
    In this paper, we obtain a low-complexity closed-form formula for the outage probability of the energy-harvested decode-and-forward (DF) relay-aided underlay Device-to-device (D2D) communications in Nakagami fading channel. By proposing a new idea which finds the power splitting factor in simultaneous wireless information and power transfer (SWIPT) energy-harvesting system such that the transmit power of the relay node in the second time slot is fixed in a pre-defined value, the obtained closed-form expression is valid for both energy-harvested and non-energy-harvested scenarios. This formula is based on n-point generalized Gauss-Laguerre and m-point Gauss-Legendre solutions. It is shown that n is more effective than m for reducing the formula complexity. In addition to a good agreement between the simulation results and numerical analysis based on normalized mean square error (NMSE), it is indicated that (n, m)=(1, 4) and (n, m)=(1, 2) are the appropriate choices, respectively for 0.5≤ µ <0.7 and µ ≥0.7, where µ is the fading factor. As shown in this investigation, increasing the average distance between D2D pairs and cellular user (lower interference), is the reason for decreasing the outage probability. Furthermore, it is clear that increasing the Nakagami fading factor is the reason for decreasing the outage probability

    A New Combination of RAKE Receiver and Adaptive Antenna Array Beamformer for Multiuser Detection in WCDMA Systems

    Get PDF
    The aim of this paper is to combine smart antenna beamforming and RAKE receiver in wideband code division multiple access (WCDMA). The proposed method combines spatial diversity as well as temporal diversity to improve the performance and overcome both interferences and multipath fading. This investigation has focused on one of the new proposed blind beamforming algorithms. It is based on constrained constant modulus (CCM) algorithm which is used for deriving a recursive-least-squares (RLS-) type optimization algorithm. We illustrate the comparison of bit error rate (BER) of the proposed receiver with simple correlator and also 1D-RAKE receiver in multiuser detection (MUD) WCDMA. The simulation results show that the proposed 2D-RAKE receiver offers lower BER rather than conventional ones, that is, it is an effective solution for decreasing the effect of interference and increasing the capacity, in a joint state

    Determining the Number of Coherent/Correlated Sources Using FBSS-based Methods

    Get PDF
    Abstract Determining the number of sources from observed data, is a fundamental problem in array signal processing. In this paper, first we focus on two popular estimators based on information theoretic criteria, AIC and MDL. Then another algorith m based on eigenvalue grads, namely EGM is presented. The co mputer simu lation results prove the effective performance of the EGM for non-coherent signals but in the small differences between the incident angles of non-coherent sources, MDL and AIC have a much better detection performance than EGM . These methods can detect only non-coherent signals, and the performance of them will be sharply declined even signals are coherent and/or correlated. So, first forward/backward spatial s moothing (FBSS) method is used as a pre-processing step to solve the coherency/correlation, and then MDL, AIC and EGM algorithms are run to estimate the number of signals. Nu merical results show that FBSS-based EGM offers higher detection probability rather than FBSS-based MDL and AIC in the case of coherent sources as well as correlated ones. Also, the higher detection probability can be achieved for correlated case compared to coherent one

    Efficient Narrowband Direction of Arrival Estimation Based on a Combination of Uniform Linear/Shirvani-Akbari Arrays

    Get PDF
    Uniform linear array (ULA) geometry does not perform well for direction of arrival (DOA) estimation at directions close to the array endfires. Shirvani and Akbari solved this problem by displacing two elements from both ends of the ULA to the top and/or bottom of the array axis. Shirvani-Akbari array (SAA) presents a considerable improvement in the DOA estimation of narrowband sources arriving at endfire directions in terms of DOA estimation accuracy and angular resolution. In this paper, all new proposed SAA configurations are modelled and also examined, numerically. In this paper, two well-known DOA estimation algorithms, multiple signal classification (MUSIC) and minimum variance distortionless response (MVDR), are used to evaluate the effectiveness of proposed arrays using total root mean square error (RMSE) criterion. In addition, two new scenarios are proposed which divide angular search to two parts, directions close to array endfires as well as middle angles. For middle angles, which belong to (−70∘≤≤70∘), ULA is considered, and for endfire angles, the angles which belong to (−90∘≤≤−70∘) and (70∘≤≤90∘), SAA is considered. Simulation results of new proposed scenarios for DOA estimation of narrowband signals show the better performance with lower computational load

    Improving LMS/NLMS-Based Beamforming Using Shirvani-Akbari Array

    Get PDF
    Abstract ULA is the most common geometry exp lo ited in array signal processing. In the beamforming operation, employing the ULA leads to obtaining narrower beamwidth with respect to other geometries in similar element numbers. Recently, Shirvani and Akbari proposed a new array by adding two elements to the ULA in top and bottom of the array axis, named as SAA. Th is new array offers a considerable imp rovement in DOA estimation performance in detection and resolution of signal sources placed at angles close to the array endfires. In this article, the performance of the proposed SAA is investigated especially in beamforming and co mpared with ULA. LMS and NLMS algorith ms that are popular adaptive beamforming methods are used for evaluation and co mparing the performance of SAA and ULA. Considering array factor, mean square erro r and bit error rate metrics, simu lation results show improved convergence speed and higher data transmission accuracy in different signal source locations, boresight angles as well as endfire ones, for SAA with respect to ULA

    Cognitive Radio in 4G/5G Wireless Communication Systems

    No full text
    The limitation of the radio spectrum and the rapid growth of communication applications make optimal usage of radio resources essential. Cognitive radio (CR) is an attractive research area for 4G/5G wireless communication systems, which enables unlicensed users to access the spectrum. Delivering higher spectral efficiency, supporting the higher number of users, and achieving higher coverage and throughput are the main advantages of CR-based networks compared to conventional ones. The main goal of this book is to provide highlights of current research topics in the field of CR-based systems. The book consists of six chapters in three sections focusing on primary and secondary users, spectrum sensing, spectrum sharing, CR-based IoT, emulation attack, and interference alignment

    Outage Analysis of Energy Harvested Relay-Aided Device-to-Device Communications in Nakagami Channel

    Get PDF
    In this paper, we obtain a low-complexity closed-form formula for the outage probability of the energy-harvested decode-and-forward (DF) relay-aided underlay Device-to-device (D2D) communications in Nakagami fading channel. By proposing a new idea which finds the power splitting factor in simultaneous wireless information and power transfer (SWIPT) energy-harvesting system such that the transmit power of the relay node in the second time slot is fixed in a pre-defined value, the obtained closed-form expression is valid for both energy-harvested and non-energy-harvested scenarios. This formula is based on n-point generalized Gauss-Laguerre and m-point Gauss-Legendre solutions. It is shown that n is more effective than m for reducing the formula complexity. In addition to a good agreement between the simulation results and numerical analysis based on normalized mean square error (NMSE), it is indicated that (n, m)=(1, 4) and (n, m)=(1, 2) are the appropriate choices, respectively for 0.5≤ µ <0.7 and µ ≥0.7, where µ is the fading factor. As shown in this investigation, increasing the average distance between D2D pairs and cellular user (lower interference), is the reason for decreasing the outage probability. Furthermore, it is clear that increasing the Nakagami fading factor is the reason for decreasing the outage probability
    corecore